RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) **B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2018** THIRD YEAR [BATCH 2015-18] : 04/05/2018 **PHYSICS (Honours)** Date Paper: VII [Gr-A] Time : 11 am – 1 pm Full Marks : 50 Answer any five questions of the following : [5×10] Explain the origin of the volume energy, surface energy and Coulomb energy term in the B-W 1. a) mass formula and compare their contributions to the binding energy of the nucleus. [3] b) Using liquid drop model explain the increase in binding fraction curve for light nuclei and the slow decrease in the curve after a broad maximum. [3] c) Find the expression for constant a_c determining the Coulomb energy assuming nucleus to be a uniform charged sphere. [4] 2. a) Explain the variation of total linear absorption coefficient with energy of γ -ray. [3] b) Compare among the different processes by which γ -rays interact with matter. If the maximum energy of the recoil electrons be 1MeV in the compton scattering of a certain γ ray, what is the energy of the photon? [3+2]c) Can pair production takes place in free space? Explain. [2] 3. a) What is straggling of range of α -particles? What are the factors causing straggling? [2+2]b) Explain the existence of continuous spectrum of β -particles. What is end-point energy? [2+1]c) A beam of mono-energetic γ -ray is incident on an aluminium sheet of thickness 10 cm. The sheet reduces the intensity of the beam to 21% of the original. Calculate the linear and mass absorption coefficients. Given the density of aluminium to be 2700 kg/m^3 . [3] 4. a) Polonium-212 emits an α -particle with kinetic energy 10.54 MeV. Determine the α disintegration energy. [3] b) What is cross-section of nuclear reaction. Give its geometrical significance. [4] c) Using the liquid drop model find the value of r_0 , nuclear radius parameter, for the β^+ -decay of $^{13}_{7}$ N. The maximum energy of a β^+ particle is found to be 1.19 MeV. [3]

- 5. a) Explain how the thermo-nuclear reactions are possible at the sun-temperature $(20 \times 10^6 \text{ K})$ although for p-p interaction the kinetic energy of the order of $0.1 \text{ MeV} (1200 \times 10^6 \text{ K})$ is required. [2]
 - b) Give example of β^+ -decay, β^- -decay and electron capture with energy decay schemes. [3]
 - c) Explain the construction and working of a linear accelerator. Calculate the final energy of the ion for a linear accelerator. [4+1]
- 6. a) Describe proton-proton chain reaction important at low temperature.[1]b) What are transuranic elements.[2]
 - c) Explain how Ghoshal experiment establishes compound nucleus hypothesis of Bohr. [5]
 - A Betatron of 100 MeV energy has a stable radius of 0.84 m. Calculate the frequency of the applied electric field if average energy gain per turn 420 eV. [2]

7. a) Which of the following interactions are allowed or disallowed? Explain with reasons.

- i) $\pi^- + p \rightarrow K^+ + \pi^- + \wedge^{\circ}$
- ii) $\pi^- + p \rightarrow K^- + \pi^+ + \wedge^\circ$
- iii) $\pi^- + p \rightarrow \Sigma^+ + K^-$
- iv) $\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu$
- v) $\pi^- \rightarrow \mu^- + \overline{\nu}_e$
- b) What is the Gell-Mann-Nishijima (G-M-N) relation? What should be the strangeness assignment of the following particles according to G-M-N relation?
 - i) π^+ ii) \wedge° iii) Σ^- iv) n [1+2]
- c) To what spatial resolution can we resolve the structure of an elementary particle by a 100GeV electron? [2]
- 8. a) Depict the weight diagrams of the {u d s} quarks and their antiparticles. Hence obtain the weight diagram of Mesons by combining the weight diagrams of quarks. Identify each meson in the diagram.
 - b) What do you mean by the intrinsic parity of an elementary particle? A spin zero particle A at rest decays into two spin zero particles. What should be the relation between the intrinsic parities between particle A and its daughters if parity conservation is assumed for the decay. [3]
 - c) Give the quark composition of the following hadrons.
 - i) π^+ ii) n iii) Σ^+ iv) K⁻ [2]

_____ × _____